cv/main.py

64 lines
2.0 KiB
Python
Raw Permalink Normal View History

2024-05-12 13:07:09 +00:00
import numpy as np
import cv2
import matplotlib.pyplot as plt
# 读取图片
image = cv2.imread('p41.png')
# 将图片转换为RGB格式
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 增强饱和度
hsv = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2HSV)
hsv[..., 1] = hsv[..., 1] * 6 # 增强饱和度
enhanced_image_rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)
# 进行Prewitt边缘检测
gray_image = cv2.cvtColor(enhanced_image_rgb, cv2.COLOR_RGB2GRAY)
prewittx = cv2.Sobel(gray_image, cv2.CV_64F, 1, 0, ksize=3)
prewitty = cv2.Sobel(gray_image, cv2.CV_64F, 0, 1, ksize=3)
prewitt_edge = cv2.magnitude(prewittx, prewitty)
_, thresholded_image = cv2.threshold(prewitt_edge, 50, 255, cv2.THRESH_BINARY)
# 寻找轮廓
contours, hierarchy = cv2.findContours(thresholded_image.astype(np.uint8), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
# 过滤面积小于阈值的轮廓
filtered_contours = []
# 计算和显示每个轮廓的最小斜率
for contour in contours:
rect = cv2.minAreaRect(contour) # 获取最小外接矩形
box = cv2.boxPoints(rect) # 计算矩形的四个角点
box = np.intp(box) # 角点坐标整数化 # 角点坐标整数化
# 求边长
widths = [np.linalg.norm(box[i] - box[(i + 1) % 4]) for i in range(4)]
sorted_widths = sorted(widths)
# 宽和高
width, height = sorted_widths[0], sorted_widths[1]
# 角度调整
angle = rect[2]
# if width < height:
# angle += 90
area = width * height
# 计算斜率
slope = np.tan(np.radians(angle))
if angle < 45 and area > 5000:
filtered_contours.append(contour)
# 将二值图像转换为RGB格式以便能在其上绘制彩色轮廓
contoured_image = cv2.cvtColor(thresholded_image.astype(np.uint8), cv2.COLOR_GRAY2RGB)
# 使用红色来绘制轮廓
cv2.drawContours(contoured_image, filtered_contours, -1, (255, 0, 0), 2)
# 使用matplotlib显示图像
plt.figure(figsize=(8, 8))
plt.imshow(contoured_image)
plt.title('Filtered Image with Red Contours and Slope Info')
plt.axis('off')
plt.show()