TenderAutomateSystem/kmeans.py

125 lines
3.8 KiB
Python
Raw Normal View History

2025-01-10 14:53:24 +00:00
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
@Project recommender
@File kmeans.py
@IDE PyCharm
@Author rengengchen
@Time 2023/12/29 11:53
"""
import torch
import time
from tqdm import tqdm
class KMEANS:
def __init__(self, n_clusters=20, max_iter=None, verbose=True, device=torch.device("cpu")):
self.n_clusters = n_clusters
self.labels = None
self.dists = None # shape: [x.shape[0],n_cluster]
self.centers = None
self.variation = torch.Tensor([float("Inf")]).to(device)
self.verbose = verbose
self.started = False
self.representative_samples = None
self.max_iter = max_iter
self.count = 0
self.device = device
def fit(self, X):
x = int(np.random.uniform(0, k))
self.centers = x[0].reshape(1, -1)
# kmeans++
for i in range(self.n_clusters - 1):
dis = 0
for j, cj in enumerate(self.centers):
d = ((x - cj) ** 2).sum(1)
if j == 0:
dis = d
else:
dis += d
self.centers = torch.cat((self.centroids, x[dis.argmax(0)].reshape(1, -1)), 0)
self.centers = init_points
while True:
# 聚类标记
self.nearest_center(x)
# 更新中心点
self.update_center(x)
if self.verbose:
print(self.variation, torch.argmin(self.dists, (0)))
if torch.abs(self.variation) < 1e-3 and self.max_iter is None:
break
elif self.max_iter is not None and self.count == self.max_iter:
break
self.count += 1
self.representative_sample()
def nearest_center(self, x):
labels = torch.empty((x.shape[0],)).long().to(self.device)
dists = torch.empty((0, self.n_clusters)).to(self.device)
for i, sample in enumerate(x):
dist = torch.sum(torch.mul(sample - self.centers, sample - self.centers), (1))
labels[i] = torch.argmin(dist)
dists = torch.cat([dists, dist.unsqueeze(0)], (0))
self.labels = labels
if self.started:
self.variation = torch.sum(self.dists - dists)
self.dists = dists
self.started = True
def update_center(self, x):
centers = torch.empty((0, x.shape[1])).to(self.device)
for i in range(self.n_clusters):
mask = self.labels == i
cluster_samples = x[mask]
centers = torch.cat([centers, torch.mean(cluster_samples, (0)).unsqueeze(0)], (0))
self.centers = centers
def representative_sample(self):
# 查找距离中心点最近的样本,作为聚类的代表样本,更加直观
self.representative_samples = torch.argmin(self.dists, (0))
def time_clock(matrix, device):
a = time.time()
k = KMEANS(max_iter=10, verbose=False, device=device)
k.fit(matrix)
b = time.time()
return (b - a) / k.count
def choose_device(cuda=False):
if cuda:
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
return device
if __name__ == "__main__":
import matplotlib.pyplot as plt
plt.figure()
device = choose_device(False)
cpu_speeds = []
for i in tqdm([20, 100, 500, 2000, 8000, 20000]):
matrix = torch.rand((10000, i)).to(device)
speed = time_clock(matrix, device)
cpu_speeds.append(speed)
l1, = plt.plot([20, 100, 500, 2000, 8000, 20000], cpu_speeds, color='r', label='CPU')
device = choose_device(True)
gpu_speeds = []
for i in tqdm([20, 100, 500, 2000, 8000, 20000]):
matrix = torch.rand((10000, i)).to(device)
speed = time_clock(matrix, device)
gpu_speeds.append(speed)
l2, = plt.plot([20, 100, 500, 2000, 8000, 20000], gpu_speeds, color='g', label="GPU")